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1. INTRODUCTION.

Suppose that two (possibly dependent) point processes are observed

simultaneously over a period of time, yielding observations at times

A1 < A2 < .. < ANA for the first process, and at times BI < B 2 < < BNB

for the second. Such data arises in many contexts, and it is often of

interest to discover and quantify the association between the two processes.

Two fields in which this situation occurs are neurophysiology and reli-

ability theory, from which the following four examples are drawn.

In neurophysiology, point processes arise as the impulse times of

neurons. An example of a hypothesis testing problem arises when one wants

to determine whether or not the impulse times of two neurons, say A and B,

are associated. Of course, if an association is discovered, it is usually of

interest to identify the nature of the relationship between the two neurons;

e.g. is A driving (inhibiting) B? If so, by how much? This is typically a

harder problem.

A second example, one in which estimation is necessary, is given by the

following situation. An animal is to be taught (or trained) to perform a

certain task. Now consider two connected neurons which are essential in the

performance of this task, and simultaneously record their firing patterns.

Before the learning has taken place, the neurons will in general affect each

other. The problem is to determine the way in which this dependence is

altered after the learning has taken place.
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The next two examples are taken from reliability theory. Consider a

system which contains two components, A and B, and for which A is

replaced according to an age replacement policy: the unit is replaced at

failure or at time T, whichever comes first. Let A1 < A2 < ... be the

successive times at which the component is replaced without having failed,

and let B1 < B2 < ... be the times of failure of component B. It may be

of interest to determine if the point processes {A.} and {B.} are depen-1 J

dent, and in particular to determine if the age replacement policy is bene-

ficial (or harmful) to component B.

As a second example, consider a series system of two subsystems A

and B, where A and B are parallel structures of kA  and kB components,

respectively (kA > 2, kB > 2). Assume that any failed component is repaired,

and that repair time is negligible. Thus, if any component fails the system

continues to operate. Let A1 < A 2 < ... and B1 < B2 < ... denote the

times at which failures occur in subsystems A and B, respectively.

Then, these form a bivariate point process, and it may be of interest to

determine if the failure times of subsystems A and B are dependent.

In this article, we describe and discuss certain graphs, plots, as

well as more formal methods that can assess the dependence between point

processes. Specifically, these methods indicate whether or not the likeli-

hood of an A-point is increased (decreased) after the occurrence of a

B-point. The techniques are illustrated on simulated data. Although

bivariate point processes arise in many fields, we emphasize the applica-

tions in neurophysiology.

We hope to illustrate the techniques described here on data drawn from

real neurons later.
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2. THE FUNCTION XAIB( .) AND THE CROSS-CORRELATION HISTOGRAM.

We proceed at a heuristic level. A rigorous approach and formal

definitions of the terms used below may be found in Daley and Vere-Jones

(1972). The book by Cox and Isham (1980) is a good guide to the litera-

ture and contains all the necessary information to formalize what we do

here.

We assume that the points {A.} and {B. form a bivariate point1 J

process that is stationary and orderly. Intuitively, the stationarity

assumption is that the process has been going on for a long time and is

in steady state. The orderliness condition is that each univariate process

has no multiple occurrences. For a Borel subset of the real line S, let

NA(S) and NB(S) denote the number of points A i and B., respectively,

that lie in S. We will use N.(s,t) to denote Ni((s,t]), for

i = A,B. We may view NA() and NB(.) as random Borel measures.

We define the rates XA and XB as follows:

(i) A = lira - P{N (t, t+h) > O}
h-+ 0

with a similar definiton for XB' By the stationarity assumption, XA

and XB are independent of t. The existence of the limit in (1) was

first proved by Khintchine (1960). Korolyuk's Theorem (see Leadbetter,

1968) states that if t1 < t2 , then

(2) E NA(tl,t 2 ) A XA(t2-tl)
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Similarly for the B process. A simple consequence of the ergodic theorem

is that with probability one,

N.(O,T)
(3) 1 - X as T

for i = A,B. This gives a third way of thinking about the rates XA

and B '

The discussion so far relates only to the processes NA(.) and NB(.) ,

taken one at a time. To see how the processes affect each other, we define

the following quantities:

(4) )AB(u) = lim' P{N (t+u,t+u+h)INB({t})=l} for -= < u <
AI h-0Oh AB

Thus, roughly speaking, XAIB(u) gives the infinitesimal probability of an

A-point u units after a B-point. The stationarity assumption implies that

XAJB(u) is independent of t. We may also define the function .BIA('),

but it is simple to see that

XB XAIB(u) = XA XBIA (- u) for -= < u <

so that it suffices to consider XAIB(u), as long as we consider both

positive and negative values of u.

The function XAIB( -) has been considered in different forms and

contexts by Cox (1965), Cox and Lewis (1972), Brillinger (1976) and

Griffith and Horn (1963), among others. If the processes NA(') and
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NB(') are independent, we clearly have

AIB(u) = XA for all u

so that AIB (- ) can indicate deviations from independence. The following

two examples of very simple neuronal networks serve to illustrate this

point.

Example i, Two independent neurons.

N A() and NB( ') are independent. Then, as was just mentioned,

(5) XAIB(u) = XA for all n

so that in particular, XAB() is constant.

Example 2: A network of three neurons.

The spontaneous firings of neurons A and B form independent processes

N1(.) and N2(.). A stimulus neuron (neuron S) has spikes which form the

process N3 ('). Let X. equal the rate of N.('), for i=1,2,3. Suppose

that every spike from S deterministically gives rise to a spike from A

and a spike from B ZA and ZB units of time later, where ZA and RB

are fixed constants. Figure 1 gives a diagram depicting this situation.

The overall spike trains of neurons A is therefore the superposition of

N. and N3 (') delayed by ZA' and similarly for neuron B. We there-

fore have

5



A A i+3

(6)

IB= 12

B 'A2 3

If in addition N3(-) is a Poisson process, a simple calculation gives

X A if u z £A- zB

(7) AAIB(u) =

if u A- B

Figure 1: Neuron S excites A and B with latencies

zA and kB' respectively.

When XAB(o) is not constant, the processes NA(.) and NB(*) are

dependent. It should be stressed that if this is the case, we cannot infer

causality: neither A nor B need be affecting the other directly. Instead

they may both be affected by a third source, as Example 2 illustrates.
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Since AB(.) can indicate deviations from independence, it is

important to be able to estimate it from the data. Cox (1965), Cox and

Lewis (1972) and Brillinger (1976) have proposed estimates of the function

AAJB(.), or what is essentially equivalent, AB' XAJB(.). Their estimate

is formed as follows: From the processes A I < A 2 < ... < ANA9

B < B < ... < BNB, compute all the differences A.-B., for 1 < i < NA,
1 2 NBt 1 -A

i < j NB. Then form a histogram (or more generally any density estimate)

of these NA .NB points. This histogram is called a cross-correlation

histogram (CCH).

Brillinger (1976) showed that if the processes {A.} and {B.} are
1 J

observed over a period of length T, then as T - very roughly, the

suitably normalized CCH resembles the function 'A1B ( ). In a little

more detail, suppose that the bin width used to form the CCH is b. His

result is that under some regularity conditions, if T - and b - 0

in such a way that bT remains constant, then the height of the normalized

CCH at a fixed point u has mean ?AJB(u) and variance that is of the

1i
order of -I. His result applies to individual points u, and does not

imply that the normalized CCH as a whole resembles 'A.B (. Furthermore,

the variance of the height of the normalized CCH is of a larger order of

magnitude than . Nevertheless, his result aids greatly in understanding

the way in which the normalized CCH estimates AIB(.).

We now illustrate the use of the CCH's in the situations given by the

two examples above.

Example A: Two independent neurons.

This is the situation described in Example 1. The parameters are
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Xl = X 2 = 100

and

T=I

(recall that T is the length of the period of observation). Two features

of the CCH are apparent. First, as expected, the CCH is generally flat, or

at least there are no apparent peaks or valleys. Second, although the

heights of the different bins in the CCH all have the same distribution,

they clearly display a lot of fluctuation, in accordance with the remark

made concerning the variance.

Example B: Two neurons simultaneously excited by a third source.

This is the situation described in Example 2. The parameters are

Xl = X 2 = X3 = 100

T= 1

zA = .04

zB = .03

In this situation we have (see equation (7))

S[ if u .01

icc if u = .01.
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Figure 3 gives the CCH for this setup. The location of the spike is at

u = .01, in accordance with (8).

Example C: Two neurons simultaneously excited by a third source.

This is the same as Example B, except that T = 10. The function

XAJB ( ) is still given by (8). Figure 4 gives the CCH for this situation.

The spike is much sharper than in Figure 3, due to the fact that T is

much larger.
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3. ESTIMATES AND CONFIDENCE INTERVALS FOR THE NORMALIZED RENEWAL FUNCTION.

In Example 2, the lags ZA and 2B were taken to be fixed constants,

and this led to the highly discontinuous form of XA!B(.) given by (8).

We saw that the CCH was particularly suited for revealing the dependence

structure in this situation. In practice however, the lags will never be

fixed constants; this will result in AAIB( .) being a smooth function.

The normalized CCH will then not be well suited for estimating it: it is

more suitable as a pointwise rather than as a global estimate of AJB

Example 3: A two-neuron network.

Consider the network described in Example 2, except that 2A E 0

and Z' is random. More specifically, if Z(i) the lag between
BB deoe

impulse i of the stimulus neuron and the induced impulse from neuron B,

assume that the 'Bi) are iid with a density f. Then it is simple to

see that

(9) XAIB(u) (i+X 3 ) + (X 2 +X 3 ) f(u)

In this example, suppose for simplicity that f was the standard

uniform distribution on [0,11. Then, if a CCH was formed it would be

likely to have a peak between 0 and 1. If we knew the distribution

of the area under the histogram, we would be able to determine whether the

peak was significant or rather was due to random fluctuation.

Let AR(tlt 2 ) denote the area under the histogram between the

points t1 and t2 . Here t1  and t2 are arbitrary points satisfying

t < t2. We may then write
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N B NA
(10) AR(tl,t2) = b 7 1 I{A -B.E (t ,t2

i$1 j-1

where b is the bin width.

Let us now define for t1 < t2

(11) U (tlt) E{NA(t ) There is a B point}
AIBI'2 A 2 at t=O

UAB(',') is called the conditional renewal function or renewal function,

for short. Note that if NA( ) and NB(.) are independent processes,

then UAIB(tl,t2) = XA(t 2-tI) by Korolyuk's theorem. Defining the

normalized renewal function W(.,.) by

(12) W(t1 ,t2) = A UAIB(tilt 2)

we then have

t2-t1  (independence)

(13) W(tt 2 ) = t2-tI  (excitation)

< 2-tI  (inhibition)

with the words "excitation" and "inhibition" suitably referring to the

interval (tl,t2). Thus, the family of parameters {W(tl,t 2); t1 < t2}

is useful in describing the dependence structure between NA(.) and

NB(').
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An appropriate way to search for an excitatory or an inhibitory

effect is to proceed as follows. Fix some constant L > 0, and consider

W(t - A, t + -b as a function of t. Here, A is determined by the

experimenter as the likely duration of an interaction, and is determined

by physiological considerations. Under independence this function is

constantly equal to A, so that deviations from L indicate a dependence

structure. It is therefore necessary to estimate W(t - -, t +

In Doss (1983) it is shown that under some regularity conditions,
AA

AR(t -L, t + A), suitably normalized, is asymptotically normal, with mean2 2

W(t - t + 2), and variance of the order of T. More specifically, the

result is that for large NB,

(i) AR(t t + L) ) is approximately N(W(T - %, t +k) NB ).

Furthermore,

(ii) a2(t) can be estimated consistently from the data.

The main feature of the result is (ii), which allows confidence intervals to

be formed. This makes possible a formal analysis. The entire function

AR(t -A, t + - BN can be plotted, and a confidence band can be put

around it. Under the hypothesis of independence, the function is essentially

flat, at height A. Upwards or downwards deviations from A (dependence)

can therefore be discerned at a glance from the plot.
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Example D: Two neurons simultaneously excited by a third source.

This is the situation described in Example 2. The parameters are:

'N = X2 = X 3 = 100, t = 3

ZA = .1, ZB = .05, (thus ZA-ZB is negative)

and A = .1

Figure 5 shows the estimate of the normalized renewal function

W(t - L, t + -L) for -. 5 < t < .5.

The peak in the diagram clearly shows the dependence structure.

In Figure 5, the estimate of the normalized renewal function appears

without the confidence band. Also, the diagram was constructed from data

where the lags were fixed and not random. In a later paper we hope to carry

out the analysis further by

(i) constructing the confidence bands

(ii) using data generated as in Example 3, i.e., with random lags, and

(iii) illustrate all the procedures discussed here on real data as well.
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